Analyse 1 : FS /CPGE / ENSA / ENSAM / FST

Cours + Corrections détaillées des Exercices + corrections des problème +Stratégies de résolution des exercices

Ratings: 5.00 / 5.00




Description

Cette offre est destiné aux étudiants en 1ère année :


Classe préparatoire : MPSI/PCSI .

ENSA / ENSAM .

FST : MIP / MIPC / GEGM .

FS : SMIA/SMPC .


Vous allez travailler sur différents exercices, beaucoup de questions, dans lesquelles on va appliquer les notions de cours suivantes :


Les Nombres Réels :

- la valeur absolue .

- la partie entière .

- le majorant et le minorant .

- la borne supérieure .

- la borne inférieure .


Les Suites Numériques :

- Suite convergente et suite divergente .

- Théorème des gendarmes .

- Suites et monotonie .

- les suites et l’absurde .

- les suites et la récurrence .

- Suites trigonométriques .

- Suite et partie entière .

- Suites extraites (sous-suites) .

- Suites adjacentes .


Les Fonctions : Limites et Continuité

- Définition de la limite .

- Théorème des gendarmes .

- Théorème des valeurs intermédiaires .

- Théorème des bornes atteintes .

- Continuité et fonctions bornées .

- Continuité et fonction périodique .

- Continuité et densité .

- Fonctions uniformément continues .


Les Fonctions : Dérivabilité et Fonctions usuelles


- Fonction dérivable en un point (définition) .

- Fonction dérivable et parité .

- Fonction de classe .

- Théorème de Rolle .

- Théorème des accroissements finis .

- Dérivée n-ème et formule de Leibniz .

- Dérivée n-ème et récurrence .

- Fonctions circulaires réciproques .

- Fonctions hyperboliques et hyperboliques réciproques .


Les Développements Limités :

- Somme des développements limités .

- Produit des développements limités .

- Composition des développements limités .

- Changement de variable et développements limités .

- Développements limités et calcul de limites .

- Développements limités et détermination d’équivalents .

What You Will Learn!

  • Les Nombres Réels
  • Les Suites Numériques
  • Les Fonctions : Limites et Continuité
  • Les Fonctions : Dérivabilité et Fonctions usuelles
  • Les Développements Limités

Who Should Attend!

  • Les étudiants en première année Classe Préparatoire : MPSI
  • Les étudiants en première année ENSA et ENSAM
  • Les étudiants en première année FST : MIP/MIPC/GEGM
  • Les étudiants en première année FS : SMIA/SMPC