Description
The field of analytics is typically built on four pillars: Descriptive Analytics, Predictive Analytics, Causal Analytics, and Prescriptive Analytics. Descriptive analytics (e.g., visualization, BI) deal with the exploration of data for patterns, predictive analytics (e.g., data mining, time-series forecasting) identifies what can happen next, causal modeling establishes causation, and prescriptive analytics help with formulating decisions. This specialization focuses on the Prescriptive Analytics (the final pillar). This specialization will review basic predictive modeling techniques that can be used to estimate values of relevant parameters, and then use optimization and simulation techniques to formulate decisions based on these parameter values and situational constraints. The specialization will teach how to model and solve decision-making problems using predictive models, linear optimization, and simulation methods.