Polynomials, Coordinate Geometry and Linear Equations

Thorough, Comprehensive Lectures with Examples and Cases for High School Students.

Ratings: 5.00 / 5.00




Description

If you want to build a strong concept in very important topics like Polynomials, Linear equations, and Coordinate Geometry, this course will be helpful for you. I tried to implement different learning levels of Bloom's Taxonomy to improve your understanding, application, and analysis capability to solve basic to higher-order thinking problems. I solved enough mathematical problems, some case studies and assertion and reasoning-based questions to show you how to solve real-life problems by applying your learning and knowledge.

The topics you will learn are:

Variables, constants, coefficients, terms, degrees, zeroes and factors of polynomials.

Relation of zeroes with numerical coefficients.

Geometrical representation of polynomials.

Mathematical operations on polynomials.

Remainder theorem, factor theorem, division algorithm for polynomials.

HCF, LCM and square root of polynomials.

Cartesian coordinate geometry.

Point slope formula, equations of straight lines.

Solving two linear equations graphically.

Distance formula, Internal section formula, external section formula, mid-point formula, point of trisection.

Coordinate point of centroid, incentre, circumcenter, orthocenter and excentre of a triangle.

Derive a formula to calculate the area of a triangle, quadrilateral and polygon from the coordinate points of three vertices.

Condition of Collinearity.

Interpolation and extrapolation method.

Solving word problems graphically.

Euler line.

Types of linear equations.

Methods of solving a single linear equation with one variable.

Method of solving a single linear equation with two variables.

Graphical representations of a single linear equation with two variables.

Pair of linear equations with two variables and methods to find their solvability.

Types of linear equations with two variables- inconsistent, consistent and dependent pair of linear equations.

Methods of solving a pair of linear equations with two variables.

Solving a pair of linear equations with two variables by graphical method.

Case studies of the polynomial, coordinate geometry and linear equation chapters.

Assertion and reasoning-based questions for polynomial, coordinate geometry and linear equation chapters.






What You Will Learn!

  • Variables, constants, coefficients, terms and degrees of polynomials.
  • Degrees, equations, factors, zeroes of polynomials.
  • Geometrical representation of polynomials.
  • Mathematical operations on Polynomials.
  • Zeroes and the relation of zeroes with numerical coefficients.
  • Remainder Theorem, Factor Theorem, Division Algorithm for Polynomials.
  • HCF, LCM and square root of polynomials.
  • 2D coordinate geometry, Mirror image.
  • Slope, Intercept, Inclination and equations of straight lines.
  • Point Slope formula.
  • Solving two linear equations graphically.
  • Distance formula and application of distance formula.
  • Internal section formula, external section formula, mid-point formula, point of trisection.
  • Deriving formula to calculate centroid, incentre, circumcenter, orthocenter and excentre of a triangle.
  • Derive a formula to calculate the area of a triangle from coordinate points of three vertices.
  • Condition of Collinearity.
  • Calculation of the area of the quadrilateral polygon from coordinate points of vertices.
  • Area of a plane enclosed by straight lines.
  • Interpolation and extrapolation method.
  • Solving word problems graphically.
  • Euler line.
  • Types of linear equations.
  • Methods of solving linear equations with one variable.
  • Single linear equation with two variables, their solution and applications.
  • Graphical representations of a single linear equation with two variables.
  • Pair of linear equations with two variables and methods to find their solvability.
  • Types of pair of linear equations with two variables- inconsistent, consistent and dependent pair of linear equations.
  • Methods of solving a pair of linear equations with two variables.
  • Solving a pair of linear equations with two variables by graphical method.

Who Should Attend!

  • Current high school students. Anyone who wants to learn algebra and coordinate geometry.