Machine Learning with Python from Scratch

Mastering Machine Learning Algorithms including Neural Networks with Numpy, Pandas, Matplotlib, Seaborn and Scikit-Learn

Ratings: 3.84 / 5.00




Description

Machine Learning is a hot topic!  Python Developers who understand how to work with Machine Learning are in high demand.

But how do you get started?

Maybe you tried to get started with Machine Learning, but couldn’t find decent tutorials online to bring you up to speed, fast.

Maybe the information you found was too basic, and didn’t give you the real-world Machine learning skills using Python that you needed.

Or maybe the information got bogged down in complex math explanations and was too difficult to relate to.

Whatever the reason, you are in the right place if you want to progress your skills in Machine Language using Python.

This course will help you to understand the main machine learning algorithms using Python, and how to apply them in your own projects.

But what exactly is Machine Learning?

It’s a field of computer science that gives computers the ability to “learn” – e.g. continually improve performance on a specific task, with data, without being explicitly programmed.

Why is it important?

Machine learning is often used to solve tasks considered too complex for humans to solve.  We create algorithms and apply a bunch of data to that algorithm and let the computer process (execute) the algorithm and search for a model (solution).

Because of the practical applications of machine learning, such as self driving cars (one example) there is huge interest from companies and government in Machine learning, and as a result, there are a a lot of opportunities for Python developers who are skilled in this field.

If you want to increase your career options, then understanding and being able to work with Machine Learning with your own Python programs should be high on your list of priorities.

What will you learn in this course?

For starters, you will learn about the main scientific libraries in Python for data analysis such as Numpy, Pandas, Matplotlib and Seaborn. You’ll then learn about artificial neural networks and how to work with machine learning models using them.

You obtain a solid background in machine learning and be able to apply that knowledge directly in your own programs.

What are the Main topics included in the course?

Data Analysis with Numpy, Pandas, Matplotlib and Seaborn.

The machine learning schema.

Overfitting and Underfitting

K Fold Cross Validation

Classification metrics

Regularization: Lasso, Ridge and ElasticNet

Logistic Regression

Support Vector Machines for Regression and Classification

Naive Bayes Classifier

Decision Trees and Random Forest

KNN classifier

Hyperparameter Optimization: GridSearchCV

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Kernel Principal Component Analysis (KPCA)

Ensemble methods: Bagging

AdaBoost

K means clustering analysis

Regression model and evaluation

Linear and Polynomial Regression

SVM, KNN, and Random Forest for Regression

RANSAC Regression

Neural Networks: Constructing our own MLP.

Perceptron and Multilayer Perceptron

And don’t worry if you do not understand some, or all of these terms. By the end of the course you will know what they are and how to use them.

Why enrolling in this course is the best decision you can make.

This course helps you to understand the difficult concepts of Machine learning in a unique way. Rather than just focusing on complex maths explanaitons, simpler explanations with charts, and info displays are included.

Many examples and genuinely useful code snippets are also included to make it even easier to learn and understand.

After completing this course, you will have the necessary skills to apply Machine learning in your own projects.

The sooner you sign up for this course, the sooner you will have the skills and knowledge you need to increase your job or consulting opportunities.    Your new job or consulting opportunity awaits!  

Why not get started today?

Click the Signup button to sign up for the course!

What You Will Learn!

  • Have an understand of Machine Learning and how to apply it in your own programs
  • Understand and be able to use Pythons main scientific libraries for Data analysis - Numpy, Pandas, Matplotlib and Seaborn.
  • Understand and be able to use artificial neural networks
  • Obtain a solid understand of machine learning in general
  • Potential for a new job in the future.

Who Should Attend!

  • Students who wish to take their basic Python skills to the next level by mastering Pythons various scientific libraries
  • Students who want to understand and apply Machine Learning into their own programs
  • Students wanting to empower themselves with machine learning.